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A B S T R A C T

Response Surface Methodology is an effective framework for performing modelling and optimization of in-
dustrial processes. The Central Composite Design is the most popular experimental design for response surface
analyses given its good statistical properties, such as decreasing prediction variance in the design center, where
it is expected to find the stationary points of the regression models. However, the common practice of reducing
center points in response surface studies may damage this property. Moreover, stationary and optimum points
are rarely the same in manufacturing processes, for several reasons, such as saddle-shaped models, convexity
incompatible with optimization direction, conflicting responses, and distinct convexities. This means that even
when the number of center points is appropriate, the optimal solutions will lie in regions with larger prediction
variance. Considering that, in this paper, we advocate that the prediction variance should also be considered into
multiobjective optimization problems. To do this, we propose a multi-criteria optimization strategy based on
capability ratios, wherein (1) the prediction variance is taken as the natural variability of the model and (2) the
differences of expected values to nadir solutions are taken as the allowed variability. Normal Boundary
Intersection method is formulated for performing the optimization of capability ratios and obtaining the Pareto
frontiers. To illustrate the feasibility of the proposed approach, we present a case study of the turning without
cutting fluids of AISI H13 steel with wiper CC650 tool. The results have supported that the proposed approach
was able to find a set of optimal solutions with satisfactory prediction capabilities for both responses of interest
(tool life T and surface roughness Ra), for a case with reduced number of center points, a saddle-shaped function
for T and a convex function for Ra, with conflicting objectives. Although it was a response more difficult to
control, the optimization benefited more Ra, which was a desired result. Finally, we also provide the sample sizes
to detect differences between Pareto optimal solutions, allowing the decision maker to find distinguishable
solutions at given levels of risk.

1. Introduction

Response Surface Methodology (RSM) is a framework widely used
in the modelling and optimization of industrial processes [1–3]. In es-
sence, RSM employs statistical and mathematical techniques and
methods to estimate response variables as a function of explanatory
factors by using planned experiments [4]. Often, second-order models
are employed to estimate a given region of interest of a response with
some explanatory factors. The core idea is that these models are used as
objective functions in optimization problems, providing the real values
of the factors that effectively improve the processes.

The Central Composite Design (CCD) is recognized in the literature

as the most popular second-order design for RSM experimental studies
because of its good statistical properties [5]. The CCD combines three
types of points to allow the estimation of the main effects and their
interactions (factorial points), the quadratic effects (axial points) and
the error component (center points). Additionally, the CCD offers the
minimum prediction variance in the design center [6], since the sta-
tionary is expected to be the optimal point and lie in the central region
of the design. Nevertheless, these assumptions are not always true in
real cases.

First, when using the CCD, the number of center points re-
commended [7] is often reduced [8–10] which leads to profound
modifications in the prediction variance functions, thus impacting on
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the ability of the response surface models to represent the real processes
[11].

Second, many response surface models of manufacturing processes
are saddle-shaped [12–14] or have optimization directions in-
compatible with convexities (maximize convex functions: [15,16]; or
minimize concave functions [1,17]); this implies that for these cases the
stationary point will not be the optimum, which will be taken to regions
farther away from the design center, where the prediction variance is
naturally greater.

Finally, it is common to find problems in which multiple response
variables with conflicting objectives need to be optimized [18–20]. In
these cases, the optimal solution will tend to regions of greater var-
iance, at least for one of the responses.

Considering the distortions caused in the prediction variance by the
reduction of center points, by the incompatibility between the con-
vexity and the optimization direction or by the optimization of multiple
responses are usually disregarded in process studies, researchers may
incur the error of optimizing a process in regions with high prediction
variance, reducing, in this way, the probability of reproducing in
practice the results obtained in the optimization.

In this sense, we consider that the optimization problems should
also take into account the prediction variance of the models so that
Pareto optimal solutions provide good prediction capabilities for all the
investigated responses. Since the position of the point in the design
space is subject to a given amount of variance [21], we argue that
capable solutions can be obtained by shifting the optimal point, so that
the variance is reduced without greatly changing the desired mean
value of each response variable.

For this, in this work, we propose an optimization strategy based on
modified capability ratios, in which the variances of the models are
taken as the components of natural variability, while the differences
between the expected values and the nadir points are taken as the
components of allowed variability. Given its advantages in obtaining
evenly distributed Pareto frontier, for the optimization of the capability
ratios, we employ the Normal Boundary Intersection (NBI) method
combined with the Gradient Reduced Generalized (GRG) algorithm.
Also, we develop the sample sizes for detecting differences between
Pareto optimal solutions according to the risk probability that the de-
cision maker is willing to assume.

To report our research work, this paper is organized as follows:
Section 2 focuses on design of experiments and prediction variance.
Section 3 describes the process capability analysis. Section 4 describes
the multiobjective optimization and the NBI method. Section 5 in-
troduces the proposed multi-criteria optimization strategy based on
capability ratios. Section 6 presents a case study for the optimization of
turning of AISI H13 hardened steel with ceramic wiper insert. In Section
7 the main conclusions and the research opportunities for future works
are drawn.

2. Design of experiments and prediction variance

The Design of Experiments (DOE) consists of the application of
mathematical and statistical concepts for the generation of efficient
experimental designs. The idea of design efficiency is that robust ana-
lyses can be performed based on a few experiments as possible.
According to Myers and Montgomery [22], among the most common
DOE techniques are factorial designs, mixture designs, Taguchi arrays,
and response surface methodology (RSM).

The RSM is widely used for process optimization because it provides
a sequence of oriented steps that cover the planning of the experiments,
the modelling of functions using empirical data and the application of
optimization methods [4,23]. The first step in the application of RSM is

to identify the parameters influencing the process and their respective
levels. Then, it is necessary to define the experimental design to be used
and perform the data collection. With the application of statistical
techniques, it is possible to analyze the influence of the parameters on
the responses of interest and to identify the most relevant process fac-
tors.

The central composite design (CCD) is recognized as the most
widely used response surface design in experimental studies, given the
advantages of modelling when using factorial, axial and center points
[22]. A response surface model relating a given response variable of
interest to its control parameters is usually expressed by a Taylor
polynomial truncated in second-order terms, as shown in Eq. (1):

= + = + + + +
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where: Y x( ) is the function of interest, Y xˆ ( ) is the empirical model
estimated from experimental data, 0 the constant term of the model, i
are the coefficients of the linear terms, ii are the coefficients of the
quadratic terms, ij are the coefficients of the interaction terms and is
the residual, also known as the random error of the model, expected to
be normally distributed with mean = =µ E ( ) 0 and known variance

=Var ( ) 2, such that: N~ (0, )2 .
The accuracy of Eq. (1) is essentially determined by two compo-

nents: (1) the observational variance, which is influenced by the sto-
chastic nature of the phenomena studied and the measurement system
used for data collection, and (2) the design variance, which is influ-
enced by the structure of the experimental design; in CCD, the number
of factors, the number of each type of point (factorial, axial and center),
and the radius of the design are the most relevant aspects. For the in-
vestigation of second-order rotatable designs, Box and Hunter [7] de-
fined the general design variance function considering the CCD is de-
signed in terms of (−1) and (+1) levels:

= + + + + +
+

Var Y
k k k k

k k

[ ˆ ( )]
2( 2) 2 ( 1)( 2) [( 1) ( 1)]

2 [( 2) ]
4
2

4 4
2

4
4

4 4

(2)

Where = 2k4 is the radius of rotatable CCD with k factors, and 4 is
the mixed fourth-order moment.

Box and Hunter [7] verified that the most significant aspect in re-
sponse surface designs is that the variance function is as “low” and
“flat” as possible everywhere in the experimental region. Considering
that k depends on the phenomena investigated and the number of
factorial and axial points are set, respectively, =n 2f

k and =n k2s , the
researchers proposed the values of 4 that guarantee the “Uniform
Precision” (UP) for different values of k:

= + + +
+

k k k
k

( 3) 9 14 7
4( 2)4

2

(3)

Based on this property, the appropriate numbers of center points are
derived as follows:

= + + +n k{[2 4(2 ) 4] } (2 2 )k k k
0

/2
4 (4)

Considering Eqs. (2)–(4), any reduction in the number of design
points or modification in the radius of the design implies that the
variance will be larger at least in some regions of the design and,
therefore, the accuracy of the model will be reduced. Table 1 provides
the recommended values of design points and design radius according
to Box and Hunter [7].

To obtain the coefficients of the model shown in Eq. (1), it is
common to use the Ordinary Least Squares (OLS) method. The OLS
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estimator is obtained by minimizing the sum of squares of the residuals
(which are, in practice, the differences between the measured values
Y x( ) and the estimated values Y xˆ ( ) in the experimental runs), such
that:

= = + + +
= = = = <
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where r designates the experimental run (or design row). For each run,
there will be a residual r .

In matrix notation:

= +L Y Y X Y Y X X Xmin T T T T T T
(6)
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This problem can be solved conceptually, by differentiating L with
respect to , as follows:
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where ˆ is the estimator of the parameter , obtained from experimental
data.

Two properties of OLS are particularly important; they are: the
expected value =E ( ) and the covariance

= =Cov X X( ) ( ) ˜T 12 ˆ , where 2 is the experimental variance,
calculated from replicated experiments (in CCD, the values measured in
the center points are used to calculate 2). These properties can be
obtained from:
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And:
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For a full quadratic model with k=2, we can write:

= + + + + +x x x x x xY xˆ ( ) ˆ ˆ ˆ ˆ ˆ ˆ
0 1 1 2 2 11 1 22 2 12 1 2 (10)

Then:

Since is estimated from the experimental data, each of its coeffi-
cients produces a component of variance for the response surface
model, as shown in Eq. (11). Box and Hunter [7] advocated that, when
analyzed individually, the variance of each coefficient of the response
surface model brings little information about the prediction variance.
Thus, a combined analysis of all the individual variances of the coef-
ficients must be used to estimate the variance of the model. Moreover,
the position of the points in the design space also induces to model
variance (because only some points are measured to explore a given
region of interest).Therefore, the prediction variance function is given

Table 1
Recommended values of design points and design radius.
Source: Adapted from Box and Hunter [7].

k 2 3 4 5

λ4 0.7844 0.8385 0.8705 0.8918
n0 (UP) 4.55 5.55 7.34 10.28
n0 (UP)a 5 6 7 10
Factorials 4 8 16 32
Axials 4 6 8 10
N (UP) 13 20 31 52

1.41 1.68 2.00 2.38

a Values recommended by Ref. [7] after rounding.
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as follows [7,24]:
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Thus, the variance of Y xˆ ( ) at a given point x0 of the experimental
space will be given by:
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Eq. (15) may be slightly modified to determine the confidence in-

terval for predicting a new observation:
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We can write the variance of the difference between the new ob-
served value and the value predicted by the model for x0 as:
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Thus, the confidence interval of the predicted value for a new ob-
servation will be:

= ± × +E Y Y t sx x x X X x( | ) ˆ ( ) [1 ( ) ]new new n p new new
T T 1

/2; (18)

In Eq. (18), s represents the estimate of and can be given by

= =s
n p
i
n
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2
, where == SSi

n
i E1
2 is the error sum of squares, n is the

number of observations, and p is the number of parameters. Considering
the properties of the CCD, SSE can be obtained with the responses
measured at the center points.

Based on the idea of prediction variance, Box and Draper [24]
proposed the Scaled Prediction Variance (SPV) function for (1) assess-
ment of individual design performance and (2) standardized compar-
ison of competing designs. The SPV is given by:
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Originally, Box and Draper [24] proposed the scaling of the pre-
diction variance function by the term N/ 2 as a way of providing a
standardized measure of the variance of the designs, since: (1) for the
same experiment, 2 is expected constant regardless of the design
chosen, so it can be eliminated, and (2) with the inclusion of experi-
mental points, X X( )T 1 is reduced at least in some design region, so N is
added as a compensation factor. In practical terms, the multiplication of
the prediction variance function by N is known as a cost penalty factor
[25–27], that is, the fewer experiments required to reduce variance, the
lower the SPV and, consequently, the better the experimental design.

Fig. 1 presents the profiles of the SPV function for a two-factor CCD
with 4 factorial points, 4 axial points and different amounts of center
points. As can be seen in the figure, the lower the number of center

points, the greater the SPV in the design center and the greater its ir-
regularities. On the other hand, the higher the number of center points,
the smoother the SPV becomes from the design center.

For the same experimental design, the scaling of the SPV function by
N does not affect the behavior of the variance along the design space.
Thus, a more direct measure of the variance provoked by the design
structure along the experimental region can be obtained by eliminating
N [27]:

=V
N

x x X X x( ) [ ( ) ]0
T T 1

0 (22)

If we want to obtain a direct measure of the precision of the model
at a given point in the design, then the variance of the observations
must also be considered [28], which leads back to Eq. (15).

3. Process capability analysis

Process capability analyses seek to evaluate the behavior of the
process variability with respect to the allowed variability.
Conceptually, a process is capable when it generates products within
the specification limits, that is when there are no nonconforming pro-
ducts [29]. In practice, for the evaluation of the capability or perfor-
mance of a process, several indices may be employed [30], called
capability ratios if the process is under statistical control (there are only
natural causes of variation) or performance indexes if the process is not
under statistical control (there are also special causes of variation) [29].
The use of the capability ratios is often considered more appropriate for
the investigation of a process since it is assumed that special causes
such as defects in machine components or damaged tools have already
been eliminated [31].

The index Cp is defined as the ratio of the total variability allowed,
measured by the difference between the specification limits, to the
natural variability of the process, measured by six standard deviations
(a common assumption is that the data comes from a normal distribu-
tion):

=C USL LSL( )
6p (23)

where USL and LSL represent the upper and the lower limits, respec-
tively, and represent the process standard deviation.

The confidence interval of Cp is given by:

C
n
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n

ˆ ( )
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ˆ ( )
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n
p p

n1 /2, 1
2

/2, 1
2

(24)

where Ĉp is the estimator of the parameter Cp, obtained from experi-
mental data, 2 is the Chi-Squared statistic evaluated for a given sig-
nificance level and n 1 degrees of freedom (which only depends on
the number of observations n).

Although it is an easily obtainable index, Cp is not sensitive to dis-
placements in the process mean. Fig. 2 illustrates some cases where the
same Cp is observed for five processes under different conditions of
centrality. For these cases, other capability ratios are more appropriate,
such as the indices Cpk and Cpm.

The index Cpk is defined as the minimum of the unilateral capability
ratios Cpl and Cpu, as shown in Eqs. (25)-(27). The idea is that, since the
standard deviation is the same for both ratios, the minimum will
provide the process capability with respect to the limit closest to the
process mean (worst case scenario). If the process is capable in this
scenario, it will also be capable in the other scenario and vice versa.

=C µ LSL( )
3pl (25)

=C USL µ( )
3pu (26)
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Fig. 1. Scale Prediction Variance for different amounts of center points: a) five center point, b) three center points and c) two center points.
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where µ represents the process mean.
The confidence interval of Cpk is given by:
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If the mean does not coincide with the centrality target T of the
process, other measures become more suitable. The ratio Cpm, for in-
stance, includes the displacement of the process mean to the target T as
a second component of process variability:

=
+

C USL LSL
µ T6 ( )

pm 2 2 (29)

A process is said to be capable if the capability ratio is greater than
acceptability levels. Table 2 summarizes the recommended minimum

values according to Montgomery [29]. Although there is no consensus
on these values [32,33], the approach proposed by Montgomery [29]
has the advantage of establishing the minimum values regarding the
condition of the process and the number of specification limits.

4. Multiobjective optimization

Industrial processes, by their very nature, have multiple dimensions
of interest, often divided into critical-to-quality (CTQ) and critical-to-
performance (CTP) characteristics. This implies that optimization pro-
blems will most often be multiobjective with conflicting objectives
since the gain in one characteristic usually implies a loss in another and
vice versa.

To address multiobjective problems where there is a trade-off be-
tween the characteristics of interest, the Weighted Sums (WS) method is
one of the most commonly used. This technique consists of an agglu-
tination operator, in which the functions of interest are weighted to
establish the degree of the relative importance of each function. The
method solves a sequence of subproblems from the minimization of a
global function, usually formed as a linear combination of the original
variables. The result of this process is the so-called Pareto frontier,
where the set of solutions is presented as ordered pairs of the objective
functions. Given the original functions f x( )i and weights w 0i , with i
= 1, 2, …, m, the multiobjective problem via WS method is formulated
according to Eq. (30):

== w f x

s t x C

w F xmin ( ) ( )

. . :
x i

n
i i

T
1

(30)

The Global Criterion Method (GCM) is another conventional mul-
tiobjective technique, which uses a global agglutination operator of the
standardized distances of the functions to their reference values [34]. In
this method, the optimization is performed by minimizing the global
function for different weights w 0i , with i = 1, 2, …, m, according to
Eq. (31):

== w
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. . :
x i

n
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f x f
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T
1

( )
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i i
U

i
U
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where fi
U is the individual optimal of the ith function.

If the original functions have different convexities, the frontier be-
comes non-convex and discontinuous with the traditional approaches,
forming clusters of Pareto-optimal solutions in some regions, but dis-
continuous in the solution space. To overcome these problems, Das and
Dennis [35] proposed the Normal Boundary Intersection (NBI) method,
showing that this technique is able to produce Pareto frontiers evenly
distributed, independent of the convexities of the functions and their
relative scales. Many studies have demonstrated the effectiveness of the
NBI method for process optimization.

Brito et al. [36] studied the surface roughness in the end milling
process of AISI 1045 steel by using Robust Parameter Design (RPD). The
authors applied both the NBI and the WS methods to minimize the
Multivariate Mean Square Error (MMSE) for Ra, Rt and their variances.
They concluded that in regions where the WS-MMSE method revealed
discontinuities, the NBI-MMSE method was able to find feasible solu-
tions.

Similar conclusions were drawn by Costa et al. [37], who performed
the optimization of five responses of surface roughness (quality mea-
sures) and one response of material removal rate (MRR; performance
measure) for the dry end milling process of AISI 1045 steel. The authors
used the Principal Component Analysis (PCA) and the MMSE to reduce
the dimensionality of the problem and extract the correlation between
the original responses. As a result of the optimization, they observed
that the proposed NBI-PCA-MMSE method overcame the WS-PCA-
MMSE method, showing that the NBI-based method was the only able
to generate a Pareto frontier with equispaced points.

Fig. 2. Processes under different conditions of centrality with the same Cp.

Table 2
Recommended minimum values of the capability ratio.
Source: Montgomery [29].

Two-sided
specifications

One-sided
specifications

Existing processes 1.33 1.25
New processes 1.50 1.45
Safety, strength, or critical

parameter, existing process
1.50 1.45

Safety, strength, or critical
parameter, new process

1.67 1.60
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Liu et al. [38] showed that the NBI was more favorable than the
convex WS method for the maximization of productivity and mini-
mization of consumption for a biotechnological fed-batch process,
concluding that the NBI method provides a more accurate representa-
tion of Pareto set. Differently from Brito et al. [36] and Costa et al. [37]
that minimized all the latent MMSE functions, Liu et al. [38] optimized
responses with different optimization directions; even, in this case, the
NBI was more satisfactory.

Gaudencio et al. [34] proposed the optimization of turning process
of the AISI H13 hardened steel by using a fuzzy NBI-MMSE. The authors
demonstrated that the proposed method presented a better performance
in the construction of the Pareto frontier in comparison to three other
methods: WS-MMSE, Global Criterium Method (GCM)-MMSE, and Arc
homotopic length (AHL)-MMSE.

Recently, a method comparable to the NBI, called Normalized
Normal Constraint (NNC), has also become popular for finding evenly
distributed Pareto frontiers. In essence, the NNC combines the original
fundamentals of the NBI with the ε-constraint method, by employing
inequality constraints to iteratively reduce the feasible objective space
and, therefore, find the optimal points. Detailed explanations about the
NNC method can be found in Messac et al. [39] and Logist et al. [40].

5. Multi-criteria optimization based on capability ratios

In this section, a multi-criteria optimization based on capability
ratios strategy is developed.

5.1. The problem

Considering the stochastic nature of the processes, in this work, we
approach three problems faced by the experimenter:

(1) First, the experimenter seeks optimal solutions to the process in-
vestigated from the optimization of a set of responses of interest;
however, from a practical point of view, the concept of optimality is
often used only for mean values of the responses, ignoring the
components of variance and, therefore, the stochastic nature of the
processes. As a consequence, although the means are optimized, in
many cases the presence of high variability prevents real

improvements from being observed in practice. Moreover, since the
industrial processes optimized normally intend to produce thou-
sands (sometimes millions) of products, large amounts of variability
can imply in non-conformities and inefficiencies. As discussed in
Section 2, we know that the regression models are affected both by
experimental data error and design variance. Then, the experi-
menter should also take into consideration the model variance in
the process optimization problem.

(2) In multi-criteria problems, there is another problem. Since the op-
timal solutions are combinations of the original response variables,
each model can present different prediction capabilities. Therefore,
for many “optimal solutions”, the combined prediction capability
can be unsatisfactory. Fig. 3 illustrates different levels of model
capabilities for the bidimensional case. The key idea is that the
Pareto optimal solutions can be distributed into three capability
clusters: (1) capable for Y1 but not for Y2, (2) capable for both Y1
and Y2, and (3) capable for Y2 but not for Y1.

(3) Finally, there is a third problem. Although Pareto frontier contains
several optimal combinations of the original responses, the pre-
sence of variability may make some of these solutions indis-
tinguishable [41,42] or, in other words, dependent on very large

Fig. 3. Prediction capability regions for Pareto optimal solutions. Note: The two selected points delimit the capable region for both response variables.

H0 is true H0 is false

0µ µ 0µ µ

/2 /2

risk

Fig. 4. Probability of the type II error for Pareto solutions.
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confirmatory sample sizes for differences to be detected. Depending
on process variability, design point, and conflict relationship be-
tween response variables, this can occur even in capable regions.

Fig. 4 shows that the distributions of two different points of Pareto
frontier can be confused, with a given probability risk. This probability
denotes the type II error and depends especially on the variance of the
Pareto frontier points, the difference to be detected between them and
the sample size used to estimate the bilateral test statistics /2 and

/2. The greater the risk, the smaller the chance of the number of points
on the Pareto frontier to be equivalent to the number of solutions ob-
served in practice, although this also depends on the spacing used for
discretization of the Pareto points.

5.2. Boundary conditions

To formulate the optimization model, we assume the following
boundary conditions:

(1) The original response variables are linearly independent
( )0y y;1 2

.
(2) The measurement system (MS) is appropriate for measuring the

original responses, which implies that the MS does not increase the
data variance ( 0)gage

2 and there is no measurement bias.
(3) The polynomial models estimated are appropriate for representing

the regions of interest of each response variable, which implies that
the model does not contain estimation bias B( 0).

(4) The process mean matches the target µ T( 0).
(5) In the design space, the process is not sensitive to disturbances due

to noise variables ( 0)z
2

5.3. Process optimization model

The objective of the proposed model is to simultaneously optimize
the original process variables, at the same time that the variances of the
regression models are minimized. Due to the nature of each response,
the estimated regression models present different variances. Therefore,
we propose that the variance of each model be embedded in its ex-
pected value, transforming the multi-criteria optimization with n ob-
jective functions (n/2 means and n/2 variances) into a problem with n/
2 latent objective functions. However, care must be taken when com-
bining expected value and variance, since this combination can increase
the non-linearity of the problem, reducing the effectiveness of some
search algorithms, such as the GRG. For this, in this work, we have
developed an optimization strategy where the variances of the models
are used as components of variability of the capability ratio Cpk, while
at the same time the nadir points are used as specification limits. The
development of the optimization model follows the stages below:

(1) We propose a modified C x
˜

( )pk as a measure of model-process cap-
ability. In the proposed C x

˜
( )pk , the mean is the expected value

E Y x[ ( )] of the response of interest and the variance is a combina-
tion of experimental error f x( ) and design prediction varianceV x( ),
called model variance Var Y x x[ ( )| ]0 , as presented in Eq. (15) –
Section 2. The proposedC x

˜
( )pk is given by the following expression:

=

=

=

C C Cx
˜
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˜
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˜
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min{ , }
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x x
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x
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3 [ ( )| ]
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3 [ ( )| ]
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3 [ ( ) ]
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3 [ ( ) ]fi
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m m
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x 0
T T

0 x 0
T T

0( )
( ) 1 ( )

( )
( ) 1 ( ) (32)

Considering that Y x( ) has a defined optimization direction, C x
˜

( )pk
will have an unilateral specification limit; therefore, if Y x( ) must be
minimized, then =C Cx

˜
( )

˜pk pu and if Y x( ) must be maximized, then
=C Cx

˜
( )

˜pk pl.

(2) For both cases (minimization or maximization of Y x( )), we propose
the individual Nadir solution of the original response variables as
the specification limit, since it is the worst solution for the in-
vestigated response but implies that at least one other response
reaches its best solution. Then, the individual Nadir solution is the
natural limit for the responses used in the multi-criteria optimiza-
tion, because values less (maximization problem) or greater
(minimization problem) than it do not improve the other responses.
Moreover, values greater (maximization problem) or less (mini-
mization problem) than individual Nadir solution imply the re-
duction of the solution space. Therefore:

• If Y x( ) must be minimized:

= =

=

C USL E Y
Var Y

f f

x x
x x

x x
x

X X˜
( ) [ ( )]

3 [ ( )| ]
[ ( )]

3 [ ( ) ]
,

for i 1,2,...,m
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i i

i

i
N

i

f
m m0 x 0

T T
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( ) 1 ( )
i

(33)

• If Y x( ) must be maximized:

= =

=
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x x
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(34)

(3) Now, considering the capability ratiosC x
˜

( )pk
i as objective functions,

the multi-criteria optimization problem is formulated as follows:

= C C CC x x x x

x x

max
˜

( ) [
˜

( ), ,
˜

( ), ,
˜

( )]

s.t.:
pk pk

i
pk
m

x pk

T

1

2 (35)

(4) To solve the multi-criteria problem formulated in stage (3), we
proposed the Normal Boundary Intersection (NBI) method, since
this technique produces Pareto frontiers evenly distributed, in-
dependent of the convexities of the functions and their relative
scales [35]. In this method, the first step is to build the payoff
matrix . This matrix can be obtained by the individual optimiza-
tion of each objective function. In matrix notation, can be written
as:

=

f x f x f x

f x f x f x

f x f x f x

* ( *) ( *) ( *)

( *) * ( *) ( *)

( *) ( *) * ( *)

i m

i i i i m

m m i m m

1 1 1 1

1

1 (36)

where x *m denotes the “optimum” of a given function m, f x* ( *)m m denotes
the “optimal” function m evaluated with respect to its optimum x *m, and
f x( *)i m denotes the ith function evaluated with respect to the optimum
x *m [43].

The set of individual optimal solutions is given in the main diagonal
of and form the Utopia point = … …f f x f x f x[ * ( *), , * ( *), * ( *)]U

i i m m1 1 . In
general, this point lies outside the feasible region and represents the
idealized solution, where all the objective functions reach their best
values. On the other hand, the set of individual worst solutions form the
Nadir point = … …f f f f[ , , , , ]N N

i
N

m
N

1 , which represents the scenario where
all the objective functions fail in providing optimal solutions. We can
obtain the individual Nadir solution of a function fm when evaluating fm
with respect to the individual optima … …x x x*, , *, , *i m1 1 of

… …f f f, , , ,i m1 1, respectively. The individual Nadir solution of fm will be
the worst value of this set.

The Nadir and Utopia points are used to normalize the original
functions, as shown in Eq. (37):

= =f
f f
f f

i mx
x

( ) [
( )

], 1,2, ...,i
i i

U

i
U

i
U (37)

From this transformation, both a normalized payoff matrix and a
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normalized vector of objective functions xF( ) can be obtained.

= =
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Since C x
˜

( )pk
i is desired to be maximized, the payoff matrix of the

proposed problem is obtained by individual maximization of each
C x
˜

( )pk
i :

=
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Substituting the values in the matrix presented in Eq. (36), we
found:

=

C x C x C x

C x C x C x
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Given these formulations, we can revisit stage (2), noting that the
optimization problem presented in Eq. (39) is one more practical ar-
gument for using the Nadir points as specification limits, since in
practice, as C x

˜
( )pk

i will be maximized for all i > 0, and for the sake of
simplicity we consider process variables with always positive measures,
then the individual optimizations of Eq. (39) provide the relation of
greater distance to Nadir points of the original variables (also combined
with the smaller model variance).

Using the original concept of the NBI method, we can obtain a
convenient transformation for C x

˜
( )pk

i . Fig. 5 presents the Pareto frontier
for capability ratios maximization. From this figure, we deduce the
following relations:
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Therefore:
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= + = +
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In the matrix notation, the equations representing the coordinates of
the point P0 and Pmax can be written as:

= +
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Then, by applying Eqs. (41)-(47), we obtain the normalized payoff
matrix and the normalized vector of objective capability functions:
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The classic NBI formulation is written as t maximization:

Fig. 5. NBI-GRG method: Pareto frontier for capability ratios maximization.
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Replacing by and F x( ) by C x
˜

( )pk in the previous equation, we
obtain the NBI bi-objective problem for model capability optimization
as follows:
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Then, the equivalent problem is derived:
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The full demonstration can be found in Appendix A.

(6) The Pareto frontier is generated by solving the NBI problem itera-
tively for different weights w. In this step, we propose the use of
Generalized Reduced Gradient (GRG) algorithms as the subroutine
for NBI, since the existing literature has shown that GRG is one of
the most robust and efficient gradient algorithms for this proposal
[37,44] and it is also available in modern computational environ-
ments, such as MS Excel [45].

(7) After optimization, the prediction capability regions are identified
in the Pareto frontier by considering appropriate limits. Considering
that the original responses have one-sided specifications, we adopt
the recommended minimum value for safety, strength, or critical

parameter and new process proposed by Montgomery [29]:
>C x

˜
( ) 1.60pk

i
i (see Table 2).

(8) Then, we propose the analysis of the risk that the selected solution
is statistically equivalent to its adjacent solutions. We advocate that
the decision maker can choose the levels of risk and the desired
difference (in standard deviation terms) between the distributions
of the Pareto solutions to obtain the sample sizes for confirmatory
experiments. This decision can be performed on the basis of the
following risk probability:

= Z n Z n( ) ( )risk
pred pred

/2 /2
(52)

where is the probability operator, is the difference between ad-
jacent Pareto solutions, and pred is the prediction standard deviation.

For the evaluation of the prediction standard deviation pred of the
proposed C x

˜
( )pk , we propose the following formulation:

= +SD C d
N

x
x X X x

[ (
˜

( ))] 1
9 54( 1) ( )pk T 1

2

2
0 0 (53)

where =d USL f x( ) or =d f x LSL( ) , and N is the number of ex-
perimental data.

Full demonstrations of Eqs. (52) and (53) can be found in
Appendices B and C, respectively.

Fig. 6 illustrates the practical meaning of the proposed analysis. At a
given level of risk, considering the difference between the mean values
of the solutions and the prediction standard deviation at the design
points investigated, the solutions can rely on the same confidence re-
gion (Fig. 6a) or in independent regions (Fig. 6b). This means that the
decision maker can consider both solutions 1 and 2 feasible (or in-
feasible) for a certain goal, but need to make separate analyses for so-
lutions 3 and 4.

6. Case study

To assess the feasibility of the optimization strategy proposed in
section 5.3 as a suitable optimization for multi-criteria response surface
problems, in this section, we illustrate the presented formulations by

1
2

3
4

1 ( )pkC x

2 ( )pkC x

(a)

(b)

Fig. 6. Pareto frontier and confidence intervals tolerances of selected points. For a given level of risk: (a) solutions 1 and 2 are in the same confidence region. (b)
solutions 3 and 4 are in different confidence regions.
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using a case study for the hard turning manufacturing process without
cutting fluids of AISI H13 steel with wiper ceramic tool.

6.1. Process background

With the increasing competition between companies, there is an
increasing demand for new industrial technologies that guarantee
higher levels of quality and productivity. Regarding the concerns about
global warming and pollution, sustainability has attracted attention in
recent decades [46]. With this, the industries have looked for better
ways to perform machining of materials, such as to avoid the use of
cutting fluids [47,48], using inserts with more efficient geometries
[49,50] and using mathematical and statistical techniques to optimize
their processes [51,52].

The turning process of hardened materials (materials in the hard-
ness range of 45–65 HRC) has been studied for more than three decades
[53]. However, many of its technologies still require further research to
ensure greater generalizations, as is the case of inserts with wiper
geometry. A few years ago, grinding processes were the most appro-
priate manufacturing strategy for the machining of hardened materials
[54,55]. However, with the improvement of materials used in cutting
tools and the development of new geometries, the turning operation of
hardened steels is becoming common.

The tool life (T) and surface roughness (Ra) are response variables
commonly used to characterize, respectively, productivity (CTP) and
quality (CTQ) measures of hard turning processes. In the study of T and
Ra, there are several influencing factors, such as cutting speed, feed
rate, depth of cut and cutting tool geometry [56,57]. The use of planned
experiments has become popular to study the influence of these factors,
where, in the past, only the “One-factor-at-a-time” strategy was em-
ployed [58]. The analytical advantage of DOE is that we can obtain
more information about the process, such as the interactions between

the factors. Among the operational advantages are fewer tests, less
consumption of material and tools, and fewer machine-hours, which in
general leads to lower experimentation costs [59,60].

6.2. Experimental procedure

For the collection of experimental data, a CCD with 8 factorial
points, 6 axial points, and 5 center points was used, totaling 19 ex-
periments based on different combinations of the levels of the control
variables shown in Table 3. The experiments were performed using a
CNC lathe “Kingsbury MHP 50” with 18 kW spindle power, a maximum
spindle speed of 4500 rpm, tool holder tower with 12 positions, and
200mm plate diameter. The plate has a hydraulic drive with a max-
imum pressure of 23 kgf/cm2, external tool holder section 20×20 mm
and GE Fanuc numerical control, and a counterpoint with 70mm dia-
meter also activated by hydraulic action. The lengths in the X and Z axis
are respectively 200mm and 550mm.

Wiper ceramic-based inserts, CC650WG, ISO code CNGA120408
T01020WG, were used. The CC650 grade used is a mixed alumina-
based ceramic with chemical composition of 70% Al2O3 + Ti [22.5%
C, 7.5% N]. The workpieces used in the turning process were made of
AISI H13 steel with chemical composition of 0.40% C, 0.35% Mn, 1.0%
Si, 5.25% Cr, 1.00% V, and 1.50% Mo, dimensions Ø
50 mm × 100 mm, and an average hardness of 54 ± 1 HRC. Tool
holder with negative geometry and entering angle χr = 95°, ISO code
DCLNL 2020K12, was used to carry out the experiments. Fig. 7 shows
the hard turning process with wiper CC650 tool.

For the measurement of surface roughness (Ra), a Hommel Tester
T1000 profilometer was employed in accordance with ISO/DIS 4287/
1E. The tool life (T), measured in minutes, was obtained by multiplying
the total number of steps by the cutting time (Tc) until the tool flank
wear reaches the maximum allowed by the standard ISO 3685
(VB=0.30mm), according to Eqs. (54) and (55). The wear measure-
ment was performed after each step by using a microscope with
30×magnification and 1-μm resolution. Fig. 8 shows the flank and
crater wear of wiper CC650 insert with VB=0.30mm. The experi-
mental matrix with the collected responses is presented in Table 4.

=Tc
l d

f V1000
f

c (54)

= =T n Tc
n l d

f V1000s
s f

c (55)

where lf=workpiece lenth, d=workpiece diameter, ns = number of
steps, f=feed rate [mm/rev], Vc=cutting speed [m/min].

6.3. Influential parameters on response variables and the surface modelling

After the data collection, we analyzed the influences of the main
effects and the interactions of the cutting parameters on the response
variables. Then, response surface models were estimated using the OLS
method [4,7]. This section presents the results of the modelling of the
responses T and Ra, as a function of process control parameters Vc, f
and ap. Using the data collected at factorial and center points (Table 4),
analyses of the main effects and influential interactions on the response
variables were performed, as shown in Fig. 9.

For the response T, the parameter Vc was the most influential, be-
cause the greater the cutting speed, the greater the wear progression in
the tool, which reduces its life. The parameter f contributes to the wear
progression in smaller proportions, also presenting some interaction
with Vc. For the response Ra, the parameter f was the most influential,
since intermediate feed rates facilitate the cutting and improve the
surface quality of the machined parts. The parameters Vc and ap also
tended to provide better surface roughness when setting at intermediate
levels.

By adding the axial points to the design, we applied the OLS method

Table 3
Control parameters and levels.
Source: Adapted from Campos [61] – co-author.

Coded Level Control Parameters

Cutting speed Feed rate Depth of cut

Vc [m/min.] f [mm/rev.] ap [mm]

1.682 267.62 0.26 0.39
1.000 225.00 0.22 0.33
0.000 162.50 0.16 0.24
−1.000 100.00 0.10 0.15
−1.682 57.38 0.06 0.09

Fig. 7. Hard turning process with wiper CC650 tool. (a) Hard turning process.
(b) Wiper CC650 tool.
Source: Adapted from Campos [61] – co-author.
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to the experimental data according to Eq. (4) to estimate the regression
coefficients shown in Table 5. Then, for each response variable, we
placed the regression coefficients in Eq. (1) to obtain the response
surface models. Eqs. (56) and (57) provide the full quadratic models for
T and Ra, respectively.

With the analysis shown in Table 5, we can see that, statistically, the
tool life T of the wiper insert CC650 only depends on the linear effect of
the cutting speed (Vc) and the quadratic effect of depth of cut (ap2),
while the surface roughness Ra of the machined parts with wiper insert
CC560 depends on the linear effects of the cutting speed (Vc) and feed
rate (f) and on the quadratic effects of the parameters Vc, f and ap.
Table 4 also reveals that the canonical models in Eqs. (56) and (57)
present good fitting because they have R2 and adj. R2 close to 100%. For
T, the best model was obtained, with adj. R2 equal to 92.49%.

For a better understanding of the behavior of each model, we
evaluated Eqs. (56) and (57) in a graphical mesh with 225 points using

the 3D surface plot of Minitab software. Figs. 10 and 11 provide the
results, showing the response surfaces as a function of the pairs of the
parameters. As can be seen in the figures, the surface of T is a saddle,
which implies that it has local maxima, but not a global maximum,
while the surface of Ra is convex, which implies that it has a global
minimum. The mathematical results of the convexity analyses are dis-
cussed in section 6.5.

6.4. Sensitivity analysis

Based on the response surface models presented in Table 5, a sen-
sitivity analysis of the cutting parameters was performed. For this, the
partial derivatives of each model with respect to each design variable
were obtained algebraically [62,63].For T, we obtain:

(a) (b)

Fig. 8. Optical images of wear mechanisms. (a) Flank wear. (b) Crater wear.
Source: Adapted from Campos [61] – co-author.

Table 4
Design matrix and collected responses.
Source: Adapted from Campos [61] – co-author.

Exp. No. Control Parameters Responses

CTP CTQ

Maximize Minimize

Vc [m/min.] f [mm/rev.] ap [mm] T [min.] Ra [μm]

Coded Uncoded Coded Uncoded Coded Uncoded Uncoded Uncoded

1 −1.000 100.000 −1.000 0.100 −1.000 0.150 61.000 0.450
2 1.000 225.000 −1.000 0.100 −1.000 0.150 32.250 0.540
3 −1.000 100.000 1.000 0.225 −1.000 0.150 50.500 0.980
4 1.000 225.000 1.000 0.225 −1.000 0.150 30.000 1.220
5 −1.000 100.000 −1.000 0.100 1.000 0.330 62.250 0.550
6 1.000 225.000 −1.000 0.100 1.000 0.330 28.500 0.620
7 −1.000 100.000 1.000 0.225 1.000 0.330 50.500 0.930
8 1.000 225.000 1.000 0.225 1.000 0.330 27.500 0.890
9 −1.682 57.388 0.000 0.163 0.000 0.240 58.000 0.670
10 1.682 267.612 0.000 0.163 0.000 0.240 23.500 1.160
11 0.000 162.500 −1.682 0.057 0.000 0.240 37.500 0.310
12 0.000 162.500 1.682 0.268 0.000 0.240 40.000 1.250
13 0.000 162.500 0.000 0.163 −1.682 0.089 49.500 0.910
14 0.000 162.500 0.000 0.163 1.682 0.391 46.000 0.720
15 0.000 162.500 0.000 0.163 0.000 0.240 42.000 0.310
16 0.000 162.500 0.000 0.163 0.000 0.240 42.500 0.320
17 0.000 162.500 0.000 0.163 0.000 0.240 41.500 0.350
18 0.000 162.500 0.000 0.163 0.000 0.240 42.000 0.320
19 0.000 162.500 0.000 0.163 0.000 0.240 43.000 0.340
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= +T
V

Vc f ap12.0 0.86 2.38 0.94
c (58)

= +T
f

f Vc1.56 2.28 2.38
(59)

= +T
a

ap Vc0.80 4.08 1.88
p (60)

For Ra, we obtain:

= + +Ra
V

Vc f ap0.09 0.38 0.01 0.04
c (61)

= + +Ra
f

f Vc ap0.25 0.28 0.01 0.07
(62)

= +Ra
a

ap Vc f0.04 0.30 0.08 0.07
p (63)

By placing the values of the planned factorial points (Table 4) in the
sets of Eqs. (58)-(60) and (61)–(63), the sensitivity analysis was ob-
tained, as shown in Fig. 12. The changes in the response variable T
range from −16.19 to +5.16 min, which implies a variation of
21.35 min. The maximum alteration of −16.19 min is observed when
combining the high levels of the parameters Vc and ap with the low
level of the parameter f, because this is a condition of greater insert
wear progression. The changes in the response variable Ra range from
−0.49 to +0.61 μm, which implies a variation of 1.10 μm. The max-
imum variation of +0.61 is observed when combining the high levels of
the parameters Vc and f with the low level of the parameter ap, because
in this condition there is an increase in the material removal rate (MRR)
and, therefore, in the cutting energy, contributing to higher surface
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Fig. 9. Effect plots for response variables. (a) Pareto chart for T. (b) Pareto chart for Ra. (c) Main effect plot for T. (d) Main effect plot for Ra.

= +
+ × ×

T Vc f ap Vc f ap
Vc f Vc ap

42.19 12.01 1.56 0.80 0.43 1.14 2.04
2.38 0.94

2 2 2

(56)

= +
+ × × ×

Ra Vc f ap Vc f ap
Vc f Vc ap f ap

0.33 0.09 0.25 0.04 0.19 0.14 0.15
0.01 0.04 0.07

2 2 2

(57)

L.G. de Oliveira, et al. Precision Engineering 59 (2019) 185–210

197



roughness [64,65].
These changes can also be taken in percentage terms. If we assume

the difference between the highest and the lowest observations of
Table 4 as the maximum range for each response variable in the design
space considered, then we can use this information to normalize the
sensitivity analysis of Fig. 12. Thus, we can infer about the behavior of
both responses in standardized units (or, in percentage terms). In
Table 4, the highest and lowest values of T are respectively 62.25min
and 23.50min, which provides a range of 38.75min. For Ra, the
highest and lowest values are, respectively, 1.25 and 0.31 μm, which

provides a range of 0.94 μm. By dividing the previously mentioned
extreme values by the ranges of each response, we obtain that, for T,
there is a percentage change from −49.03% (−16.19/38.75) to
+13.32% (+5.16/38.75) and, for Ra, there is a percentage change
from −52.13% (−0.49/0.94) to +64.89% (+0.61/0.94) μm. These
results allow us to conclude that in the design space considered, Ra is
more sensitive to changes in control parameters, thus a more difficult
response to control.

Table 5
Estimated response surface models for T and Ra (in coded units).

Term T Ra

Coef SE Coef T-Value P-Value VIF Coef SE Coef T-Value P-Value VIF

Constant 42.19 1.36 30.91 0.00 0.33 0.04 7.75 0.00
Vc −12.01 0.83 −14.53 0.00 1.00 0.09 0.03 3.35 0.01 1.00
f −1.56 0.83 −1.89 0.09 1.00 0.25 0.03 9.72 0.00 1.00
ap −0.80 0.83 −0.96 0.36 1.00 −0.04 0.03 −1.47 0.18 1.00
Vc*Vc −0.43 0.83 −0.52 0.62 1.04 0.19 0.03 7.23 0.00 1.04
f*f −1.14 0.83 −1.38 0.20 1.04 0.14 0.03 5.38 0.00 1.04
ap*ap 2.04 0.83 2.47 0.04 1.04 0.15 0.03 5.86 0.00 1.04
Vc*f 2.38 1.08 2.20 0.06 1.00 0.01 0.03 0.15 0.89 1.00
Vc*ap −0.94 1.08 −0.87 0.41 1.00 −0.04 0.03 −1.11 0.30 1.00
f*ap 0.00 1.08 0.00 1.00 1.00 −0.07 0.03 −2.07 0.07 1.00
R-sq (%) 96.25 95.76
Adj. R-sq (%) 92.49 91.53

Note: Significant terms (p-value<5%) are highlighted in bold.

(a)

(b) (c)
Fig. 10. Response surface for T: (a) Vc vs f, ap=0. (b) Vc vs ap, f=0. (c) f vs ap, Vc=0.
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6.5. Traditional approach: Bi-objective optimization of original variables

Once the response surface models are known, process optimization
can be performed using the models as objective functions of the opti-
mization problem. Prior to this step, some caution is required, such as
convexity analysis. For T, the model has both positive and negative
eigenvalues [2.1461; −2.0431; 0.3716], which denotes a saddle func-
tion. For Ra, the model has only positive eigenvalues [0.2012; 0.1687;
0.1088], which denotes a convex function.

Considering the nature of the process investigated, it is desired to
obtain the maximum tool life T and the minimum surface roughness Ra
for the parts. Since the model for T is a saddle, the stationary point will
not be the individual optimum because the maximization direction will

lead to a local maximum usually located at the boundary of the ex-
perimental design. This demonstrates that the use of the experimental
spherical region constraint is mandatory for the optimization of T [66].
On the other hand, since the model for Ra is convex, the stationary
point will be the individual optimal since there is a minimization di-
rection. The convexity analysis also indicates that the WS method is not
appropriate to optimize T and Ra concomitantly, because the multi-
objective problem has functions with different convexities [35]. These
results motivated the use of NBI restricted to the experimental region
constraint in this work.

Using the traditional NBI method introduced in Eq. (49), the func-
tions of interest are first scaled by a pay-off matrix , obtained from the
individual optimizations of f x( )1 and f x( )2 , subjected to the

(a)

(b) (c)

Fig. 11. Response surface for Ra: (a) Vc vs f, ap=0. (b) Vc vs ap, f=0. (c) f vs ap, Vc=0.

Fig. 12. Sensitivity analysis for T and Ra. (a) Extreme alteration of T. (b) Extreme alteration of Ra.
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experimental region constraint, such that =g x x x( ) 0j
T 2 or

=g x x x( )j
T 2. This constraint guarantees that the optimal solutions

will lie within the design space. For solving the individual optimiza-
tions, we employed the Generalized Reduced Gradient (GRG) algo-
rithm. The numerical results are shown in Eq. (64):

= = ( )f f
f f

62.845 46.006
0.590 0.207

U N

N U
1 1

2 2 (64)

where N and U indicate the nadir and utopia solutions, respectively.
Then, by applying Eq. (37), we obtain the scaled function as follows:

= =f
f f
f f

f
x

x x
( ) [

( )
] [

( ) 62.845
16.839

]
U

N U1
1 1

1 1

1

(65)

= =f
f f
f f

f
x

x x
( ) [

( )
] [

( ) 0.207
0.383

]
U

U U2
2 2

2 2

2

(66)

With the application of the GRG algorithm as a subroutine of the bi-
objective problem via NBI formulated in Eq. (49), the optimal

combinations of T and Ra are obtained as a function of the cutting
parameters Vc, f and ap. Fig. 13 shows the resulting Pareto frontier,
containing 21 solutions to the problem. Fig. 14 shows the Pareto
frontier for the traditional approach within the feasible region formed
by the overlaid contour plots of the responses and the right-hand side of
the experimental region constraint =g x x x( )j

T 2.
As can be seen in Figs. 13 and 14, the responses are of a conflicting

nature, since an increase in T (a desirable outcome) leads to an increase
in Ra (an undesirable outcome) and a decrease in Ra (a desirable out-
come) leads to a decrease in T (an undesirable outcome). Despite this
conflict, a Pearson correlation analysis demonstrated that these re-
sponses are linearly independent (ρT|Ra=−0.252; p-value=0.299).

In this work, we demonstrate that the decision maker should opt for
combinations that best favor the reality of the process investigated. To
illustrate this decision making, solution 9 was highlighted in Figs. 13
and 14, showing that a tool life T of approximately 55.6 min and a
surface roughness Ra of approximately 0.255 μm can be obtained si-
multaneously with the optimum set up Vc=105.5m/min, f=0.1 mm/
rev. and ap=0.2mm. This surface roughness is suitable for finishing
operations and is usually obtained with grinding processes [67,68]. If
the experimenter is interested in using the hard turning process without
cutting fluid as an alternative to the grinding process, solution 9 pro-
vides a good result for Ra (the CTQ characteristic) while allowing the
extension of T (the CTP characteristic). The set of optimal combinations
obtained in this study is presented in Table 6. As can be seen in the
table, no solution presents satisfactory capability ratios for both re-
sponses considering the acceptable value for critical parameters/new
process with one-sided specification limit (C 1.60pk ) and that solution
9 is one of the solutions with the best global result (C 1.50pk ).

Table 7 shows confidence intervals for T and Ra in optimal solution
9 calculated by Eq. (18), showing that the confidence interval for T is
narrower than the confidence interval for Ra. Figs. 15 and 16 present a
process simulation for the experimentally observed response bench-
marks (Table 4) and the optimal solution 9. Table 4 shows that, for T,
experiment 5 provides the best mean value (T=62.50min), and, for
Ra, both experiments 11 and 15 provide the best mean value
(Ra=0.310 μm); however, experiment 15 provides a better value for T
(T=42.00min), which makes it a more appropriate benchmark. Based
on Figs. 15 and 16, we demonstrate that the optimization procedure can
find suitable mean solutions between (Fig. 15) or even better than the
benchmarks (Fig. 16). However, due to the variability effect, their
probability distributions may not differentiate much, producing quality
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R
a
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m
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ap = 0.2 mm.
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Vc = 105.5 m/min.

Fig. 13. Pareto frontier for T and Ra.

Fig. 14. Pareto frontiers inside the feasible region for traditional and proposed
approaches.
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(Ra) or performance (T) losses. Moreover, the probability distribution
of T differs more from the distributions of the benchmarks than the
distribution of the optimum of Ra. This demonstrates that Ra is a re-
sponse variable that is more difficult to control because it presents
greater variability, as was also explained in the sensitivity analysis of
section 6.4. Similar results were found by Rocha et al. [45] for the hard
turning of AISI H13 steel with wiper 6050 tool.

To deal with the effects of variability on the responses studied, we
apply the proposed optimization strategy based on capability ratios in
the following section.

6.6. Proposed approach: bi-objective optimization of capability ratios

In this section, we present the application of the proposed approach
for the hard turning process investigated. Since we desire the maximum
T and the minimum Ra, we can obtain the ratios C x

˜
( )pk for T and Ra by

applying Eqs. (33) and (34).
For T, we have:

Table 6
Optimal solutions for the process investigated.

No. wi Coded control parameters Responses

Optimized Calculated

Vc [m/min.] f [mm/rev.] ap [mm] T [min.] Ra [μm] Cpk (T) Cpk (Ra)

1 0.000 −0.231 −0.928 −0.117 46.0060 0.2070 0.0000 2.9086
2 0.050 −0.343 −0.935 −0.142 47.5868 0.2093 0.3649 2.8018
3 0.100 −0.444 −0.946 −0.167 49.0017 0.2155 0.6643 2.6480
4 0.150 −0.536 −0.960 −0.190 50.2925 0.2244 0.9063 2.4647
5 0.200 −0.620 −0.976 −0.214 51.4865 0.2355 1.0990 2.2662
6 0.250 −0.700 −0.993 −0.236 52.6022 0.2484 1.2493 2.0624
7 0.300 −0.774 −1.011 −0.258 53.6532 0.2628 1.3650 1.8618
8 0.350 −0.845 −1.030 −0.279 54.6495 0.2785 1.4517 1.6680
9 0.400 −0.912 −1.050 −0.301 55.5989 0.2952 1.5153 1.4847
10 0.450 −0.976 −1.070 −0.321 56.5076 0.3128 1.5608 1.3134
11 0.500 −1.036 −1.091 −0.342 57.3805 0.3312 1.5907 1.1536
12 0.550 −1.095 −1.112 −0.364 58.2216 0.3504 1.6092 1.0062
13 0.600 −1.151 −1.133 −0.384 59.0343 0.3702 1.6197 0.8710
14 0.650 −1.215 −1.104 −0.367 59.8114 0.3908 1.6763 0.7708
15 0.700 −1.282 −1.040 −0.320 60.5155 0.4131 1.7601 0.6839
16 0.750 −1.346 −0.974 −0.262 61.1413 0.4371 1.8383 0.5915
17 0.800 −1.405 −0.904 −0.192 61.6856 0.4630 1.9123 0.4932
18 0.850 −1.460 −0.828 −0.112 62.1430 0.4909 1.9849 0.3880
19 0.900 −1.508 −0.745 −0.018 62.5036 0.5210 2.0578 0.2738
20 0.950 −1.549 −0.650 0.084 62.7494 0.5537 2.1351 0.1469
21 1.000 −1.582 −0.536 0.193 62.8449 0.5898 2.2184 0.0000

Table 7
Confidence intervals for T and Ra in optimal solution 9.

Response Lower Limit Mean Upper Limit

T 51.5224 55.5989 59.9679
Ra 0.1688 0.2952 0.4335

Fig. 15. Process simulation for T considering Ra and T benchmarks and a convenient mean optimal solution.
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For Ra, we have:
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By performing the individual optimizations of these functions as
formulated in Eq. (35), we find the Utopia and Nadir points as shown in
Eq. (69). This equation is the version of the pay-off matrix in Eq. (36)
for the bi-objective case:

Fig. 16. Process simulation for Ra considering Ra and T benchmarks and a convenient mean optimal solution.

Table 8
Optimal solutions for the investigated process.

No. w Coded control parameters Responses

Optimized Calculated

Vc [m/min.] f [mm/rev.] ap [mm] Cpk (T) Cpk (Ra) T [min.] Ra[μm]

1 0.000 −0.237 −0.756 −0.069 0.0000 3.0355 45.8535 0.2048
2 0.050 −0.303 −0.747 −0.078 0.2256 3.0182 46.7164 0.2047
3 0.100 −0.367 −0.736 −0.084 0.4371 2.9865 47.5313 0.2064
4 0.150 −0.427 −0.724 −0.090 0.6359 2.9417 48.3050 0.2096
5 0.200 −0.486 −0.712 −0.094 0.8230 2.8848 49.0431 0.2141
6 0.250 −0.543 −0.699 −0.097 0.9991 2.8167 49.7497 0.2199
7 0.300 −0.597 −0.685 −0.099 1.1648 2.7379 50.4289 0.2268
8 0.350 −0.651 −0.671 −0.099 1.3205 2.6488 51.0844 0.2348
9 0.400 −0.704 −0.657 −0.099 1.4666 2.5497 51.7210 0.2438
10 0.450 −0.756 −0.642 −0.096 1.6032 2.4410 52.3391 0.2539
11 0.500 −0.807 −0.627 −0.093 1.7305 2.3225 52.9460 0.2649
12 0.550 −0.858 −0.611 −0.086 1.8484 2.1945 53.5401 0.2770
13 0.600 −0.909 −0.595 −0.080 1.9568 2.0567 54.1308 0.2903
14 0.650 −0.961 −0.579 −0.071 2.0555 1.9089 54.7175 0.3048
15 0.700 −1.014 −0.562 −0.059 2.1443 1.7509 55.3049 0.3206
16 0.750 −1.067 −0.544 −0.044 2.2225 1.5821 55.8978 0.3381
17 0.800 −1.123 −0.526 −0.026 2.2897 1.4019 56.5005 0.3574
18 0.850 −1.180 −0.506 −0.003 2.3448 1.2092 57.1190 0.3791
19 0.900 −1.241 −0.486 0.026 2.3867 1.0030 57.7624 0.4035
20 0.950 −1.306 −0.464 0.061 2.4137 0.7815 58.4413 0.4316
21 1.000 −1.376 −0.440 0.107 2.4234 0.5421 59.1719 0.4645

Note: capable solutions for both responses are highlighted in bold.
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Then, with the application of Eqs. (41) and (42), we obtain the
scaled functions as follows:
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And the optimization problem using NBI can be formulated as
previously introduced in Eq. (51):
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For different weights w, we obtain the optimal solutions presented
in Table 8 by using the GRG algorithm. Fig. 17 provides the Pareto
frontier for ratios C x

˜
( )pk and Fig. 18 presents the Pareto frontier con-

verted to the original variables. In both figures, we indicate the cap-
ability clusters. Differently from what we observed in the traditional
approach of section 6.5, in this case, we obtain several solutions with
acceptable capability C x(

˜
( ) 1.60)pk .

Similar results can also be found with the application of the other

Fig. 17. Pareto frontier for Cpk (T) and Cpk (Ra) with capability clusters of optimal solutions.
Note: The blue points indicate that the proposed approach can find capable solutions for both T and Ra.

Fig. 18. Pareto frontier for original variables T and Ra with capability clusters of optimal solutions.
Note: The blue points indicate that the proposed approach can find capable solutions for both responses where the traditional approach finds good mean values with
unfavorable variance.
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numerical methods introduced in section 4. As can be seen in Fig. 19,
the NBI (Fig. 19a) and NNC (Fig. 19b) methods provide identical Pareto
frontiers, which was expected regarding their close mathematical fun-
damentals [39,40]. Furthermore, they were the only to offer evenly
distributed solutions (known as one of the best advantages of them)
with six capable solutions. By applying Eq. (30), the WS method con-
centrated some solutions close to the anchor points and provided four
capable solutions (Fig. 19c). Finally, by applying Eq. (31), the GCM
concentrated almost all solutions in the frontier center (Fig. 19d); al-
though this could be seen as a satisfactory result, given the purpose of
finding capable solutions for both responses, these solutions may be
indistinguishable in practice because of the variability effect. This
problem is discussed in the following paragraphs.

Assuming again that the experimenter is interested in using the hard
turning process without cutting fluid as an alternative to the grinding
process, we can select the solution 14 as an appropriate cutting con-
dition in Table 8 because it provides a surface roughness Ra near
0.30 μm and a tool life T of about 55min (mean values close to those
obtained with solution 9 in Table 6). Table 9 displays the confidence
interval for this solution according to Eq. (18). As can be seen in the
table, for both response variables, the proposed approach narrowed the
confidence interval, but, for T, the result was better.

As previously shown in Fig. 14, in the proposed approach, the
frontier is shifted to a region closer to the design center, where the
prediction variance is smaller. With this process, the mean solutions for
Ra are more favored, since Ra is a convex function and presents the

minimum point closest to the design center (see the green and the blue
lines in Fig. 14). On the other hand, the mean solutions of T become
worse, since T is a saddle-shaped function and presents local maximum
at the boundaries of the design (see the orange and the blue lines in
Fig. 14).

Despite this, with the proposed strategy, the decision maker can
choose to lose a little in mean values and gain in prediction capability,
which can benefit production with higher precision and lower rates of
non-conformities and inefficiencies. Fig. 20 presents a simulation for
the solutions selected with the traditional approach (section 6.5) and
with the proposed strategy. With the chosen solution, we lose more in
the expected value of T, but for both responses, there is a reduction of
variability, as initially proposed.

By applying Eqs. (52) and (53), we found the sample sizes for de-
tecting differences between the Pareto optimal solutions showed in
Table 8. In Table 10, we provide the sample sizes for different pairs of
solutions (all composed by solution 14). For instance, to identify the
difference between the capability ratiosC x

˜
( )pk of solutions 14 and 16, it

is necessary to measure 40 samples for T (n1) and 9 samples for Ra (n2),
considering a risk probability risk of 0.20. However, for solutions 13
and 14, with the same risk of 0.20, we obtain =n 1151 and =n 402 ,
since the incremental differences 1 and 2 are smaller. In Table 10, we
also provide the sample sizes for different risk probabilities risk, con-
sidering that the decision maker can choose the acceptable level of risk
depending on the application.

If the decision maker considers that sample sizes of 141–189 are
very large to detect differences between solutions 14 and 15, it will be
possible to consider them as coincident solutions in practice. Moreover,
this result may serve to feedback the construction of the Pareto frontier,
since the 21 solutions were found with weight increments of 0.05 from
w=0.00 to w=1.00, as regularly used in the literature [14,37,44]. If
adjacent solutions lie in the same confidence regions, the weight in-
crements could be changed to 0.10; therefore providing 11 more dis-
tinguishable solutions.

(a) (b)

(c) (d)

Fig. 19. Pareto frontiers for Cpk (T) and Cpk (Ra) obtained with different multiobjective methods. (a) NBI. (b) NNC. (c) WS. (d) GCM.
Note: The blue points indicate capable solutions for both T and Ra.

Table 9
Confidence intervals for T and Ra in optimal solution 14.

Response Lower Limit Mean Upper Limit

T 51.8108 54.7175 58.5384
Ra 0.2176 0.3048 0.4285
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7. Conclusions

In this work, we proposed a multiobjective optimization strategy
based on capability ratios. We used the prediction variance as a mea-
sure of the design capability of providing predictable optimal results.
Also, we advocated that the natural limits for the original response
variables were the individual nadir solutions. Then, we developed a
modified capability ratio for the optimization of both the original re-
sponse variables and the model variance.

To illustrate the feasibility of the proposed approach, we analyzed
the turning process of AISI H13 steel with wiper CC650 tool. Planned
experiments based on a CCD for the three control parameters Vc, f and
ap were employed to model the tool life T and surface roughness Ra.
Since the estimated regression models presented good fitting, we for-
mulated the optimization problems using them as objective functions.

First, to solve the traditional bi-objective problem for T and Ra, we
applied the NBI-GRG method; with this procedure, we obtained dif-
ferent optimal combinations of process parameters and built the Pareto
frontier. Based on this, we demonstrated the conflicting nature of the

responses, showing that the decision maker should choose the optimal
combinations that best favor the application investigated. In addition,
we showed that the traditional approach is appropriate for optimizing
mean values but not for obtaining predictable optimal solutions.

Then, we applied the proposed approach to the turning process
studied. For this, we employed the NBI-GRG method to obtain the so-
lutions of the bi-objective problem for the capability ratios of T and Ra.
With this procedure, we obtained evenly distributed Pareto frontiers for
both the capability ratios and the original response variables.
Afterward, we compared them to the previous frontier and the cap-
ability data obtained with the traditional approach. Finally, we also
compared them to other numerical methods and found that the NBI and
the NNC methods were the most advantageous in obtaining evenly
distributed frontiers.

From this work, the following major conclusions can be drawn:

• The proposed approach was able to find a satisfactory set of optimal
solutions with satisfactory prediction capabilities for both responses
of interest, considering a case of turning with a reduced number of

Table 10
Sample sizes for detecting differences between Pareto optimal solutions for C x

˜
( )pk .

Solutions risk Power 1 2 1 2 /1 1 /2 2 n1 n2

12,14
0.10 0.90 0.207 0.138 0.376 0.333 0.551 0.413 35 62
0.15 0.85 0.207 0.138 0.376 0.333 0.551 0.413 30 53
0.20 0.80 0.207 0.138 0.376 0.333 0.551 0.413 26 47

13,14
0.10 0.90 0.099 0.148 0.376 0.333 0.262 0.443 154 54
0.15 0.85 0.099 0.148 0.376 0.333 0.262 0.443 131 46
0.20 0.80 0.099 0.148 0.376 0.333 0.262 0.443 115 40

14,15
0.10 0.90 0.089 0.158 0.376 0.333 0.236 0.474 189 47
0.15 0.85 0.089 0.158 0.376 0.333 0.236 0.474 162 40
0.20 0.80 0.089 0.158 0.376 0.333 0.236 0.474 141 35

14,16
0.10 0.90 0.167 0.327 0.376 0.333 0.444 0.980 54 11
0.15 0.85 0.167 0.327 0.376 0.333 0.444 0.980 46 10
0.20 0.80 0.167 0.327 0.376 0.333 0.444 0.980 40 9

Note: the standard deviations 1 and 2 are the same for all comparisons, since the solution 14 is taken as the null hypothesis.
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Fig. 20. Comparison between simulated results obtained with traditional and proposed approaches. (a) Simulated results for T. (b) Simulated results for Ra.
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center points, a saddle-shaped function for T and a convex function
for Ra, with conflicting objectives.

• The Pareto frontier obtained with the proposed strategy was shifted
to a region closer to the design center, without greatly impairing the
mean values of the original responses. This was made possible by the
joint optimization of mean and prediction variance via the proposed
modified capability ratio.

• Although Ra is a more difficult variable to control, the proposed
optimization strategy allowed it to be favored both with respect to
mean values and prediction capability, which was a desired result.
This occurred because Ra was modeled by a convex function, with
minimization direction, and its stationary point was closer to the
design center, where the prediction variance is naturally smaller.

• For non-immediately consecutive solutions, with risk probabilities
greater than 0.10, sample sizes less than 62 are required to detect
differences between them. Larger sample sizes are needed to identify
differences between adjacent solutions.

• The identification of adjacent solutions within a single confidence
region can serve as an argument to feedback optimization via NBI
with larger spacing (such as 0.10), in order to provide more dis-
tinguishable solutions.
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Appendix A

Proposition. The classic NBI formulation written as t maximization can be represented as a bi-objective problem with scaled objective functions and one
equality constraint, such as:
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Proof. To prove that the aforementioned equality is true let's first prove that the maximization NBI problem is equivalent to its minimization, such
as:
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Let's apply the Karush-Kuhn-Tucker (KKT) optimality conditions to the NBI formulation, writing the Lagrangean of the maximization problem,
L x t{ , , }1 , and taking its partial derivatives, such that:

= + +L x t t tw n C x{ , , } [ ˆ
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Analogously, taking the gradient of the Lagrangean for the minimization type of NBI method, L x t{ , , }1 , leads to:
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Comparing Eqs. (A.4)-(A.6) to Eq. (A.10) it is straightforward that =L x t L x t{ , , } { , , }1 2 . In Eq. (A.10), the value of n̂ should be chosen as a
quasi-normal vector, such as:
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1 0
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1

1
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Replacing this vector in the general formulation, the first NBI constraint will be formulated as:
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For bi-objective problems, the aforementioned formulation can be written as:
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Formulating the expression defined in terms of t, the first NBI constraint becomes:
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Then:
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We can note in Eq. (A.20) that = =Min w Min CC x x[
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1 , then, we can rewrite Eq. (A.20) as:
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Appendix B

Proposition. The probability of type II error is given by:

= Z n Z n( ) ( )risk /2 /2 (B.1)

Proof. Let's first consider the definition of Z statistic:

= = =
+

Z
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n
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Summing and subtracting a given value from Z0, we have:
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Then, algebraically:
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Thus, the type II error can be written as:
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Appendix C

Proposition. The standard deviation of the proposed C x
˜

( )pk is given by:

= +SD C d
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x
x X X x

[ (
˜

( ))] 1
9 54( 1) ( )pk T 1

2
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Where: =d USL f x( ) or =d f x LSL( ) , and N is the number of experimental data.
Proof. Let's first consider the theoretical relation of Coefficients of Variance CV( ) for ratios [69]:
If =a b c/ , then:

= +CV a CV b CV c[ ( )] [ ( )] [ ( )]2 2 2 (C.2)

Considering =a C x
˜

( )pk , then:

=b USL f x( ), if the original response variable must be minimized. (C.3)

=b f x LSL( ) , if the original response variable must be maximized (C.4)
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0 0 (C.5)

Let's consider the case for =b USL f x( ). Replacing Eqs. (C.3) and (C.5) in Eq. (C.2), we obtain:
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We know that CV is defined as the ratio of standard deviation to the mean:

=CV
µ (C.7)

Therefore, each CV can be evaluated as follows:
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Replacing Eqs. (C.8) and (C.9) in Eq. (C.6), we obtain:
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Multiplying Eq. (C.12) by E C x(
˜

( ))pk , we have:
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The demonstration can also be performed for =b f x LSL( ) , giving the following expression:
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Therefore, we can generalize Eqs. (C.17) and (C.18):
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where =d USL f x( ) or =d f x LSL( ) , and N is the number of experimental data.
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